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Introduction
Social interaction models

Characteristics
I New models in the branch of social economy
I Consider interdependencies among a group of individuals.
I Many economic, political and social interactions are formed by

the structure of relationships.
I Examples
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Introduction
Social Interaction Models

Characteristics
I These models were developed initially by sociologists who

worked on the conceptualization of the problem.
I Then the statisticians and economists worked on the

methodology.
I From the point of view of the econometric dimension, the origin

could be traced back to the field of spatial statistics and
econometrics.
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Introduction
Social interaction models

Lee (2007) proposed the following specification for the SAR model:

Yg = λWgYg + Xg,1β1 + WgXg,2β2 + 1mgαg + εg (1)

εg ∼ Nmg (0, σ2Img ) (2)
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Introduction
Social interaction models

I Yg = (yg,1, · · · , yg,mg )′ is a vector of endogenous variables.
I Xg is the matrix of exogenous variables of dimension mg × K .
I 1mg is a vector of ones of dimension of mg × 1.
I αg are unobserved group specific effects.
I Wg is the social interaction matrix. Each of its entries will take

value 1 if there is a link and 0 otherwise.
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Introduction
Social interaction models

Structure of the model
I The observational units of the model are individuals, which are

denoted by i
I These individuals are grouped into a single group denoted g
I The composition of the group is established before the statistical

exercise
I The specification of the interactions of each group is representing by

the matrix Wg

I The interaction of all groups could also be represented into one big
matrix, which is a block diagonal matrix.
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Introduction
Social interaction models

Wg =
1

mg − 1
(1mg 1′mg

− Img ) g = 1, . . . ,G (3)

where 1mg is the mg-dimensional column vector of ones, and Img is
the mg-dimensional identity matrix. Equivalently, in terms of each unit
i from a group g,
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Introduction
Social interaction models

In terms of each unit i from a group g,

Yg = λ

 1
mg − 1

mg∑
j=1,j 6=i

yg,j

+x ′g,i,1β1+

 1
mg − 1

mg∑
j=1,j 6=i

x ′g,j,2β2

+αg+εg,i

(4)
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Likelihood function

Considering again the social interaction model:

Yg = λWg Yg + Xg,1β1 + Wr Xg,2β2 + 1mgαg + εg ,g = 1,2, . . . G
(5)

where

Zg = (Xg,1,WgXg,2)

β = (β
′

1, β
′

2)
′
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Likelihood function

This could be rewritten as:

Yg = A−1
g (Zgβ + 1mgαg + εg) (6)

Where

Ag(λ) = Img − λWg

Ag = Ag(λ)
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Likelihood function

Now let
Jg = Img −

1
mg

1mg 1′mg

I be the group mean projector.
I We consider the orthonormal matrix of Jg given by

[Fg ,1mg/
√

mg ].
I The columns in Fg are eigenvectors of Jg corresponding to the

eigenvalues of one.
I Therefore F ′g1mg = 0,F ′gFg = Im∗g and FgF ′g = Jg where

m∗g = mg − 1
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Likelihood function

Pre-multiplication of the equation (6) by F ′g leads to the following
transformed model without α′gs

(F ′gAgFg)(F ′gYg) = (F ′gZgβ) + (F ′gεg)

A∗gY ∗g = Z ∗g β + ε∗g

where
A∗g = (F ′gAgFg)

Y ∗g = (F ′gYg)

ε∗g = (F ′gεg)
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Likelihood function

Therefore the likelihood function for the transformed model is:

p(D|β, σ, λ) = (2πσ2)(−n/2)
G∑

g=1

| A∗g | ×

exp

− 1
2σ2

G∑
g=1

((A∗gY ∗g − Z ∗g β)′(A∗gY ∗g − Z ∗g β))
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Bayesian approach
Joint prior distribution

The prior distribution could be written as

π(β, σ2
0 , λ) = π(β | σ2

0)π(σ2
0)π(λ) = Nk (µ, σ2

0T )IG(α, δ)U(1/ρmin,1/ρmax )

=
1

(2π)k|2 | T |1|2 (σ2
0)k|2 × exp(− 1

2σ2
0

)(β − µ)
′
T−1(β − µ)

× δα

Γ(α)
(σ2

0)−(α+1)exp
(
−δ
σ2

0

)
× π(λ)
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Bayesian approach
Joint prior distribution

=
δα

(2π)k/2|T |1/2Γ(α)
(σ2

0)−(α+(k/2)+1))×

exp

−
(

(β − µ)
′
T−1(β − µ) + 2δ

)
2σ2

0

π(λ)
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Bayesian approach
Joint posterior distribution

Therefore, the posterior distribution for the model takes the form:

p(β, σ2, λ | D) =
p(D | β, σ2, λ)π(β, σ2)π(λ)

p(D)

p(β, σ2, λ | Y ∗,W ∗,Z ∗) ∝ (σ2)−(α
∗+(k/2)+1)

G∑
g=1

| A∗g | ×

exp
(
− 1

2σ2

[
(β − µ)

′
T−1(β − µ) + 2δ

])
×

exp

− 1
2σ2

G∑
g=1

((A∗gY ∗g − Z ∗g β)′(A∗gY ∗g − Z ∗g β))

× π(λ)
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Bayesian estimation approach
Conditional posterior distributions

Then the conditional posteriors distributions are:

p(β|λ, σ2
0) ∼ N(β∗, σ2

0T ∗)

where

β∗ = (
R∑
r

Z ∗
′
Z ∗ + T−1)−1)(Z ∗A∗Y∗+ T−1β)

T ∗ = (
R∑

r=1

(Z ∗
′
Z∗+ T−1)−1
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Bayesian approach
Conditional posterior distributions

and
p(σ2

0 |β, λ) ∼ IG(α∗, δ∗)

where
α∗ = a + n/2

δ∗ = b + (β
′
T−1β +

R∑
r=1

Y ∗
′
A∗
′
A∗Y − (β

′

nΣ−1
n βn))/2
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Bayesian approach
Conditional posterior distributions

p(λ|β, σ) ∝ p(λ, β, σ|D)

p(β, λ, σ)

∝ |In − λw |exp
(
− 1

2σ2 (A∗Y ∗ − Z ∗β)′(A∗Y ∗ − Z ∗β)

)
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Bayesian Approach
Simulation setting

Simulation setting
I All groups are assumed to have different sizes (between: 2 and

10, 2 and 15, 2 and 30, and, 2 and 50).
I The number of groups are set to 67 and 102.
I The data generating process are specified as follows : λ = 0.5,
β11 = 1, β12 = −1, β21 = 1, β22 = −1 and σ = 1.

I The data generation process for each of the Xgvariables is
Nmg (0, Img )

I The continuous dependent variable Yg can be directly generated
based on the model.

I The number of simulations are 100.
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Bayesian Approach
Simulation setting

Simulation setting
I In particular, we use vague prior distributions setting
β0 = 0,Σ = diag(1000), α = 0.001 and δ = 0.001.

I We sampled directly β and σ2
0 from Gibbs sampling steps since

their posterior conditional distributions have closed forms
I Nevertheless, we use the Metropolis–Hastings (M–H) algorithm

for sampling the social interaction parameter λ because the full
conditional distribution for λ is nonstandard due to the presence
of Wr .
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Bayesian Approach
simulation Results

Table: Root Square Mean Error (RMSE)

Group size Num gr. Approach Lambda Beta_11 Beta_12 Beta_21 Beta_22 Sigma

2 to 10

67
ML 0.3344 0.0796 0.0850 0.2546 0.2677 0.0687

Bayes 0.2405 0.0626 0.0747 0.2647 0.2743 0.0599

102
ML 0.2565 0.0588 0.0677 0.1771 0.2080 0.0523

Bayes 0.1911 0.0519 0.0534 0.2199 0.1981 0.0510

2 to 15

67
ML 0.3138 0.0559 0.0590 0.2975 0.3413 0.0480

Bayes 0.2156 0.0554 0.0508 0.2752 0.2871 0.0395

102
ML 0.2297 0.0476 0.0480 0.2526 0.2463 0.0375

Bayes 0.1906 0.0466 0.0434 0.2166 0.2388 0.0321

2 to 30

67
ML 0.3435 0.0416 0.0411 0.3438 0.3469 0.0346

Bayes 0.2226 0.0326 0.0330 0.3678 0.3506 0.0267

102
ML 0.2961 0.0287 0.0286 0.2871 0.2949 0.0240

Bayes 0.2030 0.0311 0.0266 0.2725 0.2897 0.0240

2 to 50

67
ML 0.4567 0.0326 0.0257 0.4665 0.4176 0.0214

Bayes 0.2276 0.0264 0.0276 0.4346 0.4604 0.0188

102
ML 0.3319 0.0251 0.0239 0.3666 0.3374 0.0175

Bayes 0.1878 0.0195 0.0218 0.3580 0.3201 0.0151
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Bayesian Approach
Simulation results

Table: Mean Absolute Error (MAE)

Group size Num gr. Approach Lambda Beta_11 Beta_12 Beta_21 Beta_22 Sigma

2 to 10

67
ML 0.2395 0.0617 0.0660 0.1963 0.2131 0.0534

Bayes 0.2071 0.0516 0.0600 0.2028 0.2240 0.0488

102
ML 0.1990 0.0490 0.0556 0.1400 0.1626 0.0425

Bayes 0.1618 0.0437 0.0424 0.1723 0.1518 0.0397

2 to 15

67
ML 0.2398 0.0439 0.0485 0.2394 0.2641 0.0389

Bayes 0.1904 0.0453 0.0395 0.1993 0.2348 0.0333

102
ML 0.1850 0.0364 0.0386 0.1845 0.1907 0.0307

Bayes 0.1614 0.0372 0.0351 0.1852 0.1936 0.0266

2 to 30

67
ML 0.2638 0.0341 0.0329 0.2614 0.2770 0.0258

Bayes 0.1833 0.0264 0.0264 0.2906 0.2743 0.0212

102
ML 0.2179 0.0234 0.0231 0.2316 0.2282 0.0187

Bayes 0.1697 0.0252 0.0221 0.2134 0.2440 0.0190

2 to 50

67
ML 0.3463 0.0269 0.0200 0.3604 0.3380 0.0167

Bayes 0.1832 0.0217 0.0225 0.3334 0.3662 0.0150

102
ML 0.2454 0.0208 0.0189 0.2853 0.2685 0.0140

Bayes 0.1538 0.0155 0.0175 0.2884 0.2486 0.0122
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Empirical Application
Value in Financial Communities

Introduction
I One interesting application for this type of models is bank

profitability.
I The role of banks remains central in various important aspects

for the economy
I Most of studies on bank profitability, estimate the impact of

numerous factors that may be important in explaining profits
using linear models

I Even though these studies show that it is possible to conduct a
meaningful analysis of bank profitability, there are still some
issues to be addressed.
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Empirical Application
Value in Financial Communities

Model Specification
I Therefore, we propose the following model specification:

Profitg = λWgProfitg + CashFgβ1 + WorKCgβ2 + Leveragegβ3

+EBITDAintβ4 + ROAβ5 + WgCashFgβ6 + WgWorkCgβ7

+WgLeveragegβ8 + WgEBITDAintgβ9 + WgROAgβ10 + lmgαg + εg
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Empirical Application

Table: Bayesian Estimation

Bayesian M-H summary
Variables Mean 2.50% 25% 50% 75% 97.50%

Lambda 0.9986 0.9946 0.9980 0.9990 0.9996 1.0000
Sigma 1.053 1.0440 1.0500 1.0530 1.0560 1.0620

WK -0.0257 -0.0486 -0.0339 -0.0256 -0.0178 -0.0025
Cash_Flow -0.0071 -0.0270 -0.0148 -0.0073 -0.0003 0.0152
Leverage 0.0296 0.0093 0.0223 0.0294 0.0370 0.0487

EBITDA_int 0.0335 0.0150 0.0276 0.0337 0.0397 0.0512
ROA -0.1039 -0.1243 -0.1110 -0.1038 -0.0970 -0.0840

Lag WK -0.0364 -0.1718 -0.0783 -0.0404 0.0086 0.0838
Lag Cash Flow -0.3436 -0.1348 -0.0825 -0.0372 0.0022 0.1046

Lag Leverag -0.0111 -0.1134 -0.0447 -0.0069 0.0299 0.0714
Lag EBITDA_int 0.0512 -0.0687 -0.0060 0.0519 0.0993 0.1831

Lag ROA -0.1142 -0.2379 -0.1470 -0.1104 -0.0752 -0.0125
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We welcome your comments, questions, and suggestions!!!
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