Functional Data Analysis & Variable Selection

Nedret Billor

Auburn University Department of Mathematics and Statistics

Universidad Nacional de Colombia Medellin, Colombia March 14, 2016

Functional Data Analysis

- Univariate Contains numbers as its observations (1D) X_n random variable.
- Multivariate Contains vectors as its observations (pD)
 X_n random vector.
- Functional Contains vectors of infinite dimensions as its observations (∞D):
 X_n(t), t ∈ [a, b] functions.

Figure: Functional Data (Ramsay and Silverman, 2005)

FDA : collection of different methods in statistical analysis for analyzing curves or functional data.

In standard statistical analysis, the focus is:

• on the set of data vectors (univariate, multivariate).

In FDA, the focus is

• on the type of data structure such as *curves*, *shapes*, *images*, or *set of functional observations*.

Fields using Functional Data Analysis

e-Commerce

Biometrics

Computer Science

同下 イヨト イヨト

Essentially the same as those of any other branch of statistics:

- to represent the data in ways that aid further analysis,
- to display the data so as to highlight various characteristics,
- to study important sources of pattern and variation among the data,
- to explain variation in an outcome or dependent variable by using input or independent variable information,
- to compare two or more sets of data with respect to certain types of variation....

(1日) (日) (日)

What are Functional Data about?

Figure: Canadian Weather Data (Ramsay and Silverman, 2005)

- 'x': Mean temperatures recorded by a weather station for the entire month, collected over 30 years.
- Colors: Geographic climates of the stations.

Atlantic (red), Continental (blue) Pacific (green), Arctic (black).

What are Functional Data about?

- In FDA we think of the observed data functions as single entities.
- Term *functional* refers to the intrinsic structure of the observed data.
- Functional data are usually observed and recorded discretely as p pairs (t_i, y_i).
- y_i is the 'snapshot' of the function at time t_i.
- The underlying function is assumed to be smooth.

- Estimation of functional data from noisy discrete observations.
- Estimation of functional data from sparsely sampled observations.
- Numerical representation of infinite-dimensional objects.
- $\bullet\,$ Number of 'predictors', $p\,>>\,$ n, the number of observations.

Discrete to Functional Form

How can we represent the temperature pattern of a Canadian city over the entire year?

Discrete Form: *p* pairs of (t_j, y_j) . Functional Form: $y_j = x(t_j) + \varepsilon_j$

- If discrete values are error-less, some interpolation method is used.
- If there is some observational error, some smoothing method is used.

프 + ㅋㅋ +

Representing Functional Data by basis functions

• Represent functions:

$$x(t) = \sum_{k=1}^{K} c_k \phi_k(t)$$

- Chosen basis system φ(t) should have features characteristic of the observed data.
- Fourier basis for periodic data, B-spline basis for non-periodic data.
- Interpolation is achieved when K = p.
- The degree to which y_i is smoothed is determined by K.

Smoothing Functional Data

- Two main objectives in function estimation:
 - (1) Good fit to data by minimizing $\sum [y_j x(t_j)]^2$
 - (2) Fit should not be too good so that x(t) is locally variable.
- These competing aim correspond to this basic principle, Mean squared error = ${\rm Bias}^2 + {\rm Sampling}$ variance where

$$Bias[\hat{x}(t)] = x(t) - E[\hat{x}(t)]$$
$$Var[\hat{x}(t)] = E[\{\hat{x}(t) - E[\hat{x}(t)]\}^2]$$

(*) *) *) *)

Smoothing with Roughness Penalty

Model:
$$y_j = \sum_{k=1}^{K} c_k \phi_k(t_j) + \varepsilon_j, \ j = 1, \dots, p$$

• Popular measure to quantify the notion of "roughness" of a function is **curvature**,

$$PEN_2(x) = \int [D^2x(s)]^2 ds$$

• The penalized residual sum of squares,

$$PENSSE_m(\mathbf{y}|\mathbf{c}) = (\mathbf{y} - \mathbf{\Phi}\mathbf{c})'\mathbf{W}(\mathbf{y} - \mathbf{\Phi}\mathbf{c}) + \lambda PEN_2(x)$$

where ${\bf W}$ is a weight matrix and λ is a smoothing parameter.

$$\mathbf{\hat{c}} = (\mathbf{\Phi}^{'}\mathbf{W}\mathbf{\Phi} + \lambda\mathbf{R})^{-1}\mathbf{\Phi}^{'}\mathbf{W}\mathbf{y}$$

where $\mathbf{R} = \int D^m \phi(s) D^m \phi'(s) ds$.

Illustration

<注入 < 注入 < 注入

- How can I summarize the patterns?
- Do the summary statistics "mean" and "covariance" have any meaning when I'm dealing with curves?

- Now that we have functional estimated curves of our observed data, we'd like to summarize the estimated temperature curves.
- Climatologists can then use these summaries to talk about typical weather patterns and about variability in these patterns over time and across Canada.

Descriptive Statistics for Functional Data

Sample Mean function:

$$\hat{\mu}(t) = \bar{x} = n^{-1} \sum_{i=1}^{n} x_i(t)$$

Sample variance function:

$$var_x(t) = (n-1)^{-1} \sum_{i=1}^n (x_i(t) - \bar{x})^2$$

Sample covariance function:

$$\hat{c}(t_1, t_2) = (n-1)^{-1} \sum_{i=1}^n (x_i(t_1) - \bar{x}(t_1))(x_i(t_2) - \bar{x}(t_2))$$

Sample correlation function:

$$\mathit{corr}_{x}(t_1, t_2) = \frac{\hat{c}(t_1, t_2)}{\sqrt{\mathit{var}_{x}(t_1)\mathit{var}_{x}(t_2)}}$$

A B + A B +
 D
 A

Sample Mean Function

Atlantic stations in red, Continental in blue, Pacific in green, and Arctic in black.

- Calculated by averaging the functions pointwise across the replications.
- The mean curves show the distinctive patterns of the four climates.
- Pacific cities are much warmer than the rest of Canada in the winter and spring but have fairly typical summer temperatures.
- The Arctic stations, on the other hand, have temperatures cooler than the average throughout the year.

Sample Standard deviation function

- Simple analogue of the classical standard deviation has similar interpretations.
- SD function suggests: the winter months have the greatest variability in recorded temperatures across Canada - approximately 9 degrees Celsius, as compared to the summer months with a standard deviation of about 4 degrees Celsius.

Question: What modes of variation can we can find in the data?

- How can I determine the primary modes of variation in the data?
- How many typical modes can summarize these thirty-five curves?

Most sets of data display a small number of dominant or substantial modes of variation!

principal components analysis to functional data.

Functional PCA

- {x(t), t ∈ T}: a stochastic process where T is some index set which is a bounded interval on ℜ.
- The principal component scores corresponding to weight γ is generalized to an integral form,

$$Z_i = \int \gamma_j(t) x_i(t) dt.$$

• The weight function $\gamma_j(t)$ is obtained by solving

$$\max_{\langle \gamma_{\mathbf{j}}, \gamma_{\mathbf{m}} \rangle = \mathcal{I}(\mathbf{j}=\mathbf{m}), \ \mathbf{j} \leq \mathbf{m}} N^{-1} \sum (\int \gamma_{\mathbf{j}} x_{\mathbf{j}})^2$$

or equivalent to solving the functional eigenequation

$$\int \psi(s,t)\gamma(t) dt = \lambda \gamma(s) \quad \gamma \in L^2,$$

where ψ is the covariance function of the x(t).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

PCs for Weather Data

First four PC curves estimated from the basis approximation

Lasso-based Variable Selection Methods for Functional Regression Model

Classification and **Regression** problems with large numbers of candidate predictor variables occur in a wide variety of scientific fields.

In 1996, Tim Hesterberg asked Brad Efron:

"What are the most important problems in statistics?"

A single problem: Variable selection in regression.

- Hard to argue with this assessment!
- This answer reflects the importance of variable selection in practice since Efron's work has long been strongly grounded in solving real problems.

イヨトイヨト

- accurate predictions,
- interpretable models—determining which predictors are meaningful,
- stability-small changes in the data should not result in large changes in either the subset of predictors used, the associated coefficients, or the predictions, and
- avoiding bias in hypothesis tests during or after variable selection

Functional Regression Model with Functional Predictors and a Scalar Quantitative Response

Simple Functional Regression Model: Canadian Weather Data

Does the total amount of precipitation depend on specific features of the temperature profile of a weather station? Assumed Model:

$$Y_i = lpha + \int_{\mathcal{T}} X_i(t) eta(t) dt + \epsilon_i.$$

$$i = 1, \ldots, 35.$$

- Y : scalar response (amount of precipitation).
- X(t) : temperature functional predictor.

- Y : scalar response.
- X(t) (functional predictor): squared integrable random function.
- X_i(t) assumed to be E(X_i(t)) = 0 and observed without measurement error at a grid of time points.
- $\epsilon_i \sim N(0, \sigma^2)$.
- α : a scalar parameter.
- $\beta(t)$: smooth and squared integrable parameter function.

ヨト イヨト イヨト

Multiple Functional Regression Model: Japanese Weather Data

Data from Chronological Scientific Tables 2005 (Matsui and Konishi, 2011)

Assumed Model:

$$Y_i = lpha + \sum_{j=1}^p \int_{\mathcal{T}_I} X_{ij}(t) eta_j(t) dt + \epsilon_i.$$

 $i=1,\ldots,79.$

Four functional predictors (p = 4):

- Monthly observed average temperatures,
- Average atmospheric pressure,
- Average humidity,
- Time of daylight,
- Annual total precipitation (scalar).

Because functional coefficients (β_j) are more complicated objects than scalar coefficients in classical multiple linear regression,

Generally desirable to identify those significant variables in predicting the responses, even if *p* is small!

Aim: Select the functional predictor variables that contribute the most for the prediction of annual total precipitation.

Some major approaches:

- **Traditional approach**(Ramsay and Silverman, 2005): *represent* functional data by an expansion with respect to a certain basis, and subsequent inferences are carried out on the coefficients.
- **The French school** (Ferraty and Vieu, 2006): *take a* nonparametric point of view, extends the traditional nonparametric techniques, most notably the kernel estimate, to the functional case.
- Other methods: such as put functional regression in the reproducing kernel Hilbert space framework has been developed (Preda, 2007; Lian, 2007).

ゆ く ゆ く ゆ く

Functional Regression Model with Functional / Non-functional Predictors and Binary Response

Fluorescence spectroscopy data for cervical pre-cancer diagnosis

Objective: to discriminate the diseased observations from normal based on the high dimensional functional data – the fluorescence spectral measurements.

Fluorescence spectroscopy data

- Functional predictors: 717 EEM measurements (each contains 16 curves)
- Non-functional predictors : associated with the measurements which may cause systematic difference in spectra, such as tissue type of the measurement site (two levels), or the menopausal status of patients (three levels).

on n=306 patients.

Basic concern: When there are multiple functions per observation, (a) how do we perform a curve selection to select few important curves & (b)perform classification based on the selected curves?

ゆ く き と く ほ と

Classification with functional data: **ALSO** a challenging problem due to the high dimensionality of the observation space.

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Variable Selection Methods for Standard Multiple Linear Regression Model

There are

- Traditional Approaches
- Modern Methods (Regularization Methods)

More recently, regularization methods have received much attention for **standard linear regression**:

- LASSO (Least Absolute Shrinkage and Selection Operator),
- SCAD (Smoothly clipped absolute deviation) penalty,
- Adaptive LASSO...

Variable selection is an important problem in functional regression analysis.

- β(t)'s are more complicated objects than scalar coefficients in classical multiple linear regression.
- identify those significant X(t) predictors in predicting Y,
 even if p is small!
- Multiple parameters exist for a functional predictor, therefore group structure based techniques. These are:
 - functional group LASSO
 - Inctional group SCAD

< 同 > < 三 > < 三 >

Suppose that we have n observations

$$\{(X_{ij}(t), Y_i); t \in \Im, i = 1, ..., N, j = 1, ..., p\}.$$

Functional Regression Model:

$$Y_i = \alpha + \Sigma_{j=1}^p \int_{\mathcal{T}} X_{ij}(t) \beta_j(t) dt + \epsilon_i, \qquad i = 1, \dots, N.$$

- Y_i: scalar response.
- $\mathbf{X}_i(t) = (X_{i1}(t), ..., X_{ip}(t))^T$ are functional predictors.

$X_{ij}(t)$ can be discretized on a finite grid & expressed as

$$X_{ij}(t) = \Sigma_{b=1}^{K} a_{ijb} \phi_{jb}(t)$$

φ_{jb}(t) : basis functions (e.g. Fourier, splines, Gaussian)
a_{ijb}: basis coefficients.

ゆ く ゆ く ゆ く

The coefficient functions β_j expressed as:

$$\beta_j(t) = \sum_{b=1}^K c_{jb} \phi_{jb}(t)$$

- $\phi_{jb}(t)$: known basis functions,
- c_{jb} : unknown corresponding coefficients.

(4) E > (4) E >

Functional Regression Model

Our Model becomes:

$$Y_{i} = \alpha + \sum_{j=1}^{p} \Phi_{ij}^{T} \mathbf{c}_{j} + \epsilon_{i}$$
(1)
$$= \mathbf{z}_{i}^{T} \mathbf{c} + \epsilon_{i}.$$
(2)

$$\begin{aligned} \mathbf{z}_{i} &= (1, \mathbf{a}_{i1}^{T} \mathbf{J}_{\phi_{1}}, \dots, \mathbf{a}_{ip}^{T} \mathbf{J}_{\phi_{p}})^{T} \\ \mathbf{c} &= (\alpha, \mathbf{c}_{1}^{T}, \dots, \mathbf{c}_{p}^{T})^{T} \\ \mathbf{J}_{b} &= \int_{\Im} \phi_{b}^{T}(t) \phi_{b}(t) dt \; (K \times K \text{ cross-product matrices}). \end{aligned}$$

→ E > < E >

- Functional Group SCAD: Matsui and Konishi (2011)
- Functional Group SCAD: Lian (2013)
- Functional Group LASSO: Zhu and Cox (2009)
- Functional Group LASSO: Gertheiss et al. (2013)
- Wavelet-Based LASSO: Zhao et al. (2013)

Functional Group LASSO: Zhu and Cox (2009) and Gertheiss et al. (2013)

Both methods:

- for Generalized Linear Model (Classification problem).
- based on Regularization Methods (Functional Group LASSO)
 - Zhu and Cox approach: Functional PCs are used to reduce the model to multivariate logistic regression and a grouped Lasso penalty is applied to the reduced model to select useful functional covariates among multiple curves.
 - Gertheiss et al.'s approach: penalized likelihood method that simultaneously controls the sparsity of the model and the smoothness of the corresponding coefficient functions by adequate penalization.

(4 回) (4 回) (4 回)

Objective function:

$$\sum_{i=1}^{n} (Y_i - \alpha - \sum_{j=1}^{p} \Phi_{ij}^{T} \mathbf{c}_j)^2 + P_{\lambda,\varphi}(\beta_j).$$

where the penalty function

$$\mathcal{P}_{\lambda,arphi}(eta_j) = \lambda(||eta_j||^2 + arphi||eta_j''||^2)^{1/2}.$$

•
$$||.||^2 = \int (.)^2 dt$$
 is the L^2 norm.

- β_i'' is the second derivative of β_j .
- λ is the parameter that controls sparseness.
- φ is the smoothing parameter that controls smoothness of the coefficients.

- As $\lambda \uparrow$, $\hat{eta}(\mathsf{t}) \to \mathsf{0}$ at some value.
- As $\varphi \uparrow$, the departure from linearity is penalized stronger and $\hat{\beta}(t)$ becomes closer to a linear function.
- Smaller values for φ result in very wiggly and difficult to interpret estimated coefficient functions.
- For optimal estimates (in terms of accuracy and interpretability), an adequate (λ, φ) combination has to be chosen.
- λ and φ are selected via K-fold cross-validation.

ゆ く き と く ほ と

• $P_{\lambda,\varphi}(\beta_j)$ is modified as:

$$P_{\lambda,\varphi}(\beta_j) = \lambda(\kappa_j ||\beta_j||^2 + \varphi \nu_j ||\beta_j''||^2)^{1/2}$$

- The weights κ_j and ν_j are chosen in a data-adaptive way to:
 - Reflect some subjectivity about the true parameter functions
 - Allow for different shrinkage and smoothness for the different covariates.

Robust Variable Selection for Functional Regression Models with Functional Predictors and a Scalar Response

Outliers in Japanese Weather Data (Pallavi et al. 2013)

One of the main assumptions in these approaches: Homogeneity of Data

Outlier Curve: That curve that has been generated by a stochastic process with a different distribution than the rest of curves, which are assumed to be identically distributed (Febrero et al, 2007).

Aim: Select the functional predictor variables that contribute the most for the prediction of annual total precipitation in the presence of outliers.

Robust Functional Group LASSO: Pannu and Billor, 2015

Two methods based on Gertheiss et al.'s approach: α and c_j can be estimated by minimizing the following:

LAD-groupLASSO

$$\sum_{i=1}^{n} |Y_i - \alpha - \sum_{j=1}^{p} \mathbf{\Phi}_{ij}^{T} \mathbf{c}_{j}| + P_{\lambda,\varphi}(\beta_j).$$

WLAD-groupLASSO

$$\sum_{i=1}^{n} w_i |Y_i - \alpha - \sum_{j=1}^{p} \Phi_{ij}^{T} \mathbf{c}_j| + P_{\lambda,\varphi}(\beta_j).$$

where, $P_{\lambda,\varphi}(\beta_j)$ is the penalty function (Meier et al., 2009) and w_i are the weights for controlling outliers in the functional predictor space.

・ロト ・回ト ・ヨト ・ヨト

Adaptive LAD-gLASSO and Adaptive WLAD-gLASSO

Penalty function:

$$P_{\lambda,\varphi}(\beta_j) = \lambda(\kappa_j ||\beta_j||^2 + v_j \varphi ||\beta_j''||^2)^{1/2}.$$

- κ_j for smoothness
- v_j for shrinkage

data adaptive weights.

• • = • • = •

- *w_i* are obtained using the robust distances of the predictors.
- The outlying observations in the x direction will have large distances and the corresponding weights will be small.
- Therefore, it is expected that the resulting estimator will be robust against the outliers in the response variable and leverage points.

- Calculate the robust location and scatter estimates, μ̃ and Σ for the location vector and the scatter matrix of the data x₁, x₂, ..., x_n ∈ ℜ^p.
 - One can use high breakdown point location and scatter estimators such as *MCD* (Minimum Covariance Determinant).
 - The idea behind *MCD* is to find observations whose empirical covariance matrix has the smallest determinant, yielding a pure subset of observations from which to compute standards estimates of location and covariance.
- Compute the robust distances: $RD(\mathbf{x}_i) = (\mathbf{x}_i - \tilde{\mu})^T \tilde{\Sigma}^{-1} (\mathbf{x}_i - \tilde{\mu}).$

• Calculate the weights $w_i = min\left\{1, \frac{p}{RD(\mathbf{x}_i)}\right\}$ for i = 1, ..., n.

Contamination of Y

- ϵ are generated from the N(0, 1), t_2 and t_7 .
- Contamination level: 15%.

* E > < E >

Contamination X(t)

Asymmetric contamination (15%)

E > < E >

Performance measures (50 runs):

• SE =
$$\int (\hat{\beta}_j(t) - \beta_j(t))^2 dt$$

• Mean squared Errors of prediction:

$$MSE = 1/n \sum_{i} (Y_i - \hat{Y}_i)^2.$$

• Mean Absolute Errors of prediction:

$$MAD = 1/n \sum_i |Y_i - \hat{Y}_i|.$$

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

• p = 10, N = 300

- Time grid: 300 equidistant time points in (0, 300).
- The true model:

$$Y_i = \alpha + \sum_{j=1}^5 \int_0^{300} \beta_j(t) X_{ij}(t) dt + \epsilon_i.$$

 $\epsilon_i \sim N(0,4)$

• True model depends only on $\beta_1(t)$ - $\beta_5(t)$.

直 ト イヨ ト イヨ ト

Numerical Study for Robust Functional Group LASSO

LAD-gLASSO(blue) and gLASSO (red) (No-contamination)

LAD-gLASSO (blue) and gLASSO (red) (15% contamination of Y).

Numerical Study for Robust Functional Group LASSO

LAD-agLASSO (blue), LAD-gLASSO (red) and classical agLASSO (yellow) at 15% contamination of Y..

Outliers in functional predictors

Outliers in scalar response

 $\exists \rightarrow$

Classical Functional-gLASSO

Nedret Billor Functional Data Analysis & Variable Selection

Functional WLAD-gLASSO

Functional Adaptive WLAD-gLASSO

	TEMP	PRESSURE	HUMIDITY	DAYLIGHT	Avg. Model Size
Functional WLAD- agLASSO	1	0.36	0.98	0.40	2.74
Functional WLAD- gLASSO	1	0.38	0.96	0.66	3.00
Functional LAD- gLASSO	1	0.94	0.98	0.96	3.88

Proportions of runs with the respective functional predictor being selected and average model size.

Average PRESSURE and DAYLIGHT are less frequently selected by functional WLAD-agLASSO!

* E > < E >

Selected References

- Gertheiss, J., Maity, A. & Staicu, A-M. (2013). Variable Selection in Generalized Functional Linear Models. Stat. 2: 86-101.
- Pannu, J. and Billor, N. (2015) Robust Group-Lasso for Functional Regression Model, Communication in Statistics: Simulation and Computation. (http://www.tandfonline.com/doi/full/10.1080/03610918.2015.1096375.).
- Lian, H. (2013). Shrinkage estimation and selection for multiple functional regression. Statistica Sinica. 23: 51-74.
- Matsui, H. & Konishi, S. (2011). Variable Selection for Functional Regression Models via the L1 Regularization. Computational Statistics and Data Analysis. 55: 3304-3310.
- Ramsay, JO. & Silverman, BW. (2005). Functional Data Analysis. Springer.
- Zhao. Y., Ogden, R. T. & Reiss, P. T. (2013). Wavelet-Based LASSO in Functional Linear Regression. Journal of Computational and Graphical Statistics. 21:3, 600-617.
- Zhu, H. & Cox, DD. (2009). A functional generalized linear model with curve selection in cervical pre-cancer diagnosis using fluorescence spectroscopy. IMS Lecture Notes, Monograph Series - Optimality: The Third Erich L. Lehmann Symposium. 57: 173- 189.

イロト イボト イヨト イヨト

Thank You!

イロト イヨト イヨト イヨト

Department of Mathematics and Statistics, Auburn University

The Department of Mathematics and Statistics (DMS):

- over 50 professors representing diverse areas
 - pure mathematics
 - applied mathematics
 - statistics
- offer undergraduate programs leading to a Bachelor of Science in Mathematics and Applied Mathematics (with options in Applied Mathematics, Discrete Mathematics, or Actuarial Science)
- graduate programs leading to a Master of Science in Mathematics, Applied Mathematics, Statistics, or Probability and Statistics, and/or the Doctor of Philosophy in Mathematics and the Doctor of Philosophy in Mathematics, concentration in Statistics.
- 130 GTAs

同下 イヨト イヨト

List of Research Fields

- Actuarial Mathematics
- Algebra
- Analysis
- Applied Mathematics
- Discrete Mathematics
- Differential Equations
- Geometry
- Linear Algebra
- Numerical Analysis
- Statistics
- Stochastic Analysis
- Topology

Possibilities for

- Research Collaborations
- Graduate Students Recruiting
- Faculty Exchange