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Schork, Allison and Thiel (1996) described applications of
mixture in human genetics.

Techniques of Normal mixture maximum levels of neural
responses are showed in West and Turner (1994).

Clustering techniques are studied in Fraley and Raftery (2002)
and Baudry, (2010)).
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Mixture models: formulation (Frühwirth-Schnatter (2006))

Consider a sample y = (y1, ..., yn)
′
of i.i.d. observations from a

finite mixture distribution, where yi ∈ Rm:

y ∼ p(y|ϑK ,MK ) =
K∑

k=1

ηkp(y |θk);
K∑

k=1

ηk = 1.

The component densities p(y |θk)

η1, ..., ηK with ηk > 0 are called the component weights.

The component parameters (θ1, ...,θK ).

MK is the K -th mixture model and K is unknown.
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Normal mixture models

Mixtures of Normal distributions:

y ∼ p(y|ϑ,Mk) =
K∑

k=1

ηkNp(y|µk ,Σk),
K∑

k=1

ηk = 1. (1)

The parameters η1, ..., ηK with ηk > 0 are the component
weights.

µk is a p × 1 component mean vector of the k-th component
density.

The component variance-covariance matrix Σk .
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Lack of identifiability: invariance

In the case of a mixture distribution with K components we have
K ! equivalent ways of arranging the components

Example

Consider ϑ = (θ,η) in the parameter space ΘK = ΘK × EK and
the subset J P(ϑ) ⊂ ΘK :

J P(ϑ) =
⋃

ψ ∈ N(K)

{ϑ∗ ∈ ΘK : ϑ∗ = ψ(ϑ)},

N(K ): the set of the K ! permutations of {1, ..,K} and ψ is one of
those permutations; ϑ and any point ϑ∗ ∈ J P(ϑ) generate the
same distribution for yi
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Constrains under the component parameters

Gosh and Sen (1985) imposed a threshold for the separation
between the mean component parameters:

|µ2 − µ1| ≥ ε0 > 0,

for unknown but identifiable µ1 and µ2. The first asymptotic
version of the likelihood ratio test for testing one against
two-components Normal mixture model as follows:[

max{0, supµ2
W (µ2)}

]2
,

where W (.) is a Gaussian process with zero mean and covariance
kernel depending on the true value of µ1 under H0 and the
variance of W (µ2) is unity for all µ2.
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Bayes Factor-Posterior probability MK

The integrated likelihood

p(y|MK ) =

∫
ΘK

p(y|MK ,ϑK )p(ϑK |MK )dϑK . (2)

Bayes factor:

BK+1,K (y) =
p(y|MK+1)

p(y|MK )
, (3)

weight of evidence, i.e. the logarithm of the Bayes factor,
log(BK+1,K (y)). Posterior probability MK

p(MK |y) ∝ p(y|MK )p(MK ).
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Schwarz (1978) - BIC

To choosing the model that maximizes the logarithm of the
likelihood and penalizes model complexity:

BICK ≡ log(p(y|ϑ̂K ,MK ))− 0.5dK log(n)

where ϑ̂ is the MLE. According to Kass and Wasserman (1995),
BICK approximates in the following sense:

log(BFK+1,K ) ≈ (BICK+1 − BICK ), n →∞
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In the context of mixture models we use the following definition of
NLPs:

Definition

Consider a sample y = (y1, ..., yn)
′
of i.i.d. observations from:

y ∼ p(y|ϑK ,MK ) =
K∑

k=1

ηkp(y |θk),

two nested probability models Mi and Mj with Θi ⊂ Θj . We say
pN(ϑj |Mj), a continuous prior density for ϑj ∈ Θj under Mj , is a
NLP iff, let ϑ∗j ∈ Θj be any such that p(y|ϑ∗j ,Mj) = p(y|ϑ∗i ,Mi )

for some ϑ∗i ∈ Θi ; then pN(ϑj |Mj) → 0 as d(ϑj ,ϑ
∗
j ) → 0.
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Non-local priors for multivariate Normal mixture models

pN
K ,p(µ1, ...,µK ,AΣ,η|gN ,MK ) =

1

BK ,p

∏
1≤i<k≤K

(µi − µk)
′
A−1

Σ (µi − µk)

gN
×

K∏
k=1

Np

(
µk |m,AΣ × gN

)
Wishartp(Σ

−1
k |ν,S)× Dir(η|α, ..., α),

gN is a known scale parameter which is important for prior
elicitation purposes and α > 1 and AΣ is a symmetric
positive-definite matrix.

The computation of the normalization constant BK ,p is not
trivial!!!
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Testing one component vs a two-component Normal mixture
model.

M1 : yi ∼N(yi |µ, σ2)

vs

M2 : yi ∼ ηN(yi |µ1, σ
2) + (1− η)N(yi |µ2, σ

2),

σ2 and η known and P(M1) = P(M2) = 1/2.
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Testing one component vs a two-component Normal mixture
model. m = 0

Under M1 the prior for µ:

p(µ|σ2, g1,M1) = N(µ|m, σ2g1) g1 = 1.

Under M2 the Normal and Moment prior for (µ1, µ2).

pL
2 (µ1, µ2|σ2, gL,M2) = N(µ1|m, σ2gL)N(µ2|m, σ2gL),

pN
2 (µ1, µ2|σ2, gN ,M2) =

(µ2 − µ1)
2

2σ2gN
N(µ1|m, σ2gN)N(µ2|m, σ2gN).
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Normal vs Moment Priors under M2
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Testing one component vs a two-component Normal mixture
model.

Consider the Normal and Moment priors using the separation
parameter δ = (µ2 − µ1)/σ and µ∗1 = µ1/σ:

pL(µ∗1, δ|σ2, gL,M2) = N(µ∗1|m, gL)N(δ|m − µ∗1, g
L);

pN
2 (µ∗1, δ|σ2, gN ,M2) =

δ2

2gN
N(µ∗1|m, gN)N(δ|m − µ∗1, g

N).
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Moment priors induce a
penalization
δ2 = (µ2 − µ1)

2/σ2, in
linear discriminant analysis
the natural unit of
measurement for
separability between two
clusters proposed by Fisher
(1936). gN drives the
separability between the
component means.!
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EM algorithm and Gibbs Sampling for Local priors (data
augmentation)

In order to implement the EM algorithm and a Gibbs Sampling
scheme we define a latent variable by using the missing data
structure:

zik =

{
1 if i belongs to k component,

0 otherwise,
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Integrated likelihood Approximation - Moment-Wishart-Dir

Using the posterior distribution under Normal-Wishart-Dirichlet:

p̂N∗
K ,p(y1, ..., yn|gN ,MK ) =

p̂L
K ,p(y1, ..., yn|gN ,MK )

1

MK !

∑
ψ ∈ N(K)

M∑
m=1

ψ(ωp(ϑ
(m)
K ).

The importance weights:

ωp(ϑ
(m)
K ) = BK ,p

∏
1≤i<k≤K

(µ
(m)
i − µ

(m)
k )

′
A
−1(m)
Σ (µ

(m)
i − µ

(m)
k )

gN
.

Straightforward approximation!:

Approximation of the integrated likelihood under
Normal-Wishart-Dirichlet.
the MCMC output for the component parameters.
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EM algorithm under MOM-Wishart-Dirichlet priors

For t ≥ 1 and k = 1, ...,K given ϑ
(0)
K = (µ

(0)
k ,Σ

(0)
k ,η(0)) in the

E-step we compute the expectation of the missing variables:

z
(t)
ik = p(zik = k|yi ,ϑ

(t−1)
K )

=
η

(t−1)
k p(yi |µ

(t−1)
k ,Σ

(t−1)
k )∑K

k=1 η
(t−1)
k p(yi |µk

(t−1),Σ
(t−1)
k )

.
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Sparsity properties: Theorem of the shrinkage induced by
NLPs for choosing the number of components

Let pN
k0

(θk0 ,ηk0
|σ2,MK0) = pN

k0
(θk0 |σ2,MK0)pk0(ηk0

|MK0) be the prior

for the component means and weights, where pN
k0

(θk0 |σ2,MK0) and
pk0(ηk0

|MK0) are the exchangeable MOM and the exchangeable dirichlet
priors for the component means and weights respectively, under MK0

model and with fixed dim(Θk0 × Ek0). Let A be the set of (θ∗k0
,η∗k0

) such
that p(y|θ∗k0

,η∗k0
,Mk0) minimizes the K-L divergence to the

data-generating model p∗(y) and assume that the k0-identifiability
property, so that

pk0(y|θ
∗
k0
,η∗k0

,Mk0)

pk0(y|θ̃k0 , η̃k0
,Mk0)

→∞, (4)

almost surely as n →∞ for any (θ∗k0
,η∗k0

) ∈ A and (θ̃k0 , η̃k0
) /∈ A. Then

gk0(y)
P−→ dk0(θ

∗
k0

). (5)
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Synthetic examples: univariate Normal mixture models
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Case 1: Unimodal |δ| = 0

N(y|0, 1).

Case 2: Multi-modality |δ| = 2

0.5N(y| − 1, 1) + 0.5N(y|1, 1).
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Choosing one, two or three-component Normal mixture
model

M1 : yi ∼ N(yi |µ, σ2),

M2 : yi ∼ η1N(yi |µ1, σ
2) + (1− η1)N(yi |µ2, σ

2),

M3 : yi ∼ η1N(yi |µ1, σ
2) + η2N(yi |µ2, σ

2) + (1− η1 − η2)N(yi |µ3, σ
3).

P(M1) = P(M2) = P(M2) = 1/3
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Simulation study.

Generate 4000 MCMC draws after a burn-in phase of 2000
draws. Generate 100 simulated data set for each sample size.

An estimate of the posterior probability of M1,

p(M1|y) = e− log(B̂F 21)/(1 + e− log(B̂F 21)).

Comparison performance:

BIC
Local priors: Normal-Inv-Gamma-Dir (α = 1)
Non-local priors: Moment-Inv-Gamma-Dir (α = 4)
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Case 1 samples from N(y |0, 1).
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Case 2 samples from 0.5N(y | − 1, 1) + 0.5N(y |1, 1).
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Synthetic examples: multivariate Normal mixture models
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Introduction
NLPs in Normal mixture models

Computational algorithms
Synthetic examples: simulation study and a misspecified model

Application: Old Faithful Geyser
Conclusions

Choosing one, two or bivariate three-component Normal
mixture model

M1 : yi ∼ Np(yi |µ,Σ),

M2 : yi ∼ η1Np(yi |µ1,Σ) + (1− η1)Np(yi |µ2,Σ),

M3 : yi ∼ η1Np(yi |µ1,Σ) + η2Np(yi |µ2,Σ) + (1− η1 − η2)Np(yi |µ3,Σ).

P(M1) = P(M2) = P(M2) = 1/3.
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Case 1: 0.5Np(y|µ1,Σ) + 0.5Np(y|µ2,Σ) - distance 1 standard deviation.
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Case 2: 1
3Np(y|µ1,Σ) + 1

3Np(y|µ2,Σ) + 1
3Np(y|µ3,Σ)
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Introduction
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Computational algorithms
Synthetic examples: simulation study and a misspecified model
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Conclusions

Misspecified model: a two component student-t model
with 4 degrees of freedom with µ

′

1 = (−1,−1), µ
′

2 = (1, 1)
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Syntectic example: generate 500 observations from the
misspecified model

−10 −5 0 5 10

−
6

−
4

−
2

0
2

4
6

y1

y 2

 −10.5 

 −10.5 

 −10 

 −10 

 −9.5 

 −9.5 

 −9 

 −9 

 −8.5 

 −8.5 

 −8 

 −8 

 −7.5 

 −7.5  −7 

 −6.5 

 −6 

 −5.5 

 −5 

 −4.5 

 −4 

 −4 

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●
●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
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Introduction
NLPs in Normal mixture models

Computational algorithms
Synthetic examples: simulation study and a misspecified model

Application: Old Faithful Geyser
Conclusions

Simulation study.

Generate 4000 MCMC draws after a burn-in phase of 2000
draws. Generate 100 simulated data set for each sample size.

An estimate of the posterior probability of M1,

p(M1|y) = e− log(B̂F 21)/(1 + e− log(B̂F 21)).

Comparison performance:

BIC
Local priors: Normal-Inv-Gamma-Dir (α = 1)
Non-local priors: Moment-Inv-Gamma-Dir (α = 4)

Bivariate Normal mixture models with K = 1 to K = 5
components. Comparison performance.
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Introduction
NLPs in Normal mixture models

Computational algorithms
Synthetic examples: simulation study and a misspecified model

Application: Old Faithful Geyser
Conclusions

Misspecified model. BIC, logarithm of the integrated
likelihood and posterior probability under each model Mk .

Number of components K = 1 K = 2 K = 3 K = 4 K = 5

p(MK |y) approximation with BIC 0.0002 0.0002 0 0.9994 0.0002

p(MK |y) under LPs 0 0 0 0.0589 0.9411

p(MK |y) under NLPs 0 0.9999 0.0001 0 0
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Classification - EM algorithm under Non-local priors
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Computational algorithms
Synthetic examples: simulation study and a misspecified model

Application: Old Faithful Geyser
Conclusions

Classification - EM algorithm - BIC
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Introduction
NLPs in Normal mixture models

Computational algorithms
Synthetic examples: simulation study and a misspecified model

Application: Old Faithful Geyser
Conclusions

Old Faithful the biggest cone-type geyser located in the
Yellowstone National Park, Wyoming, United States
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Introduction
NLPs in Normal mixture models

Computational algorithms
Synthetic examples: simulation study and a misspecified model

Application: Old Faithful Geyser
Conclusions

Old Faithful data: n = 272 observations and 2 variables
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Introduction
NLPs in Normal mixture models

Computational algorithms
Synthetic examples: simulation study and a misspecified model

Application: Old Faithful Geyser
Conclusions

Old Faithful data. BIC, logarithm of the integrated
likelihood and posterior probability under each model Mk .

Number of components K = 1 K = 2 K = 3 K = 4 K = 5

p(MK |y) approximation with BIC 0 0.0042 0.9444 0.0514 0

p(MK |y) under LPs 0 0 0.0596 0.3058 0.6346

p(MK |y) under NLPs 0 0.0002 0.9908 0.0090 0.0090
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Computational algorithms
Synthetic examples: simulation study and a misspecified model
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Conclusions

Classification - EM algorithm - BIC
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Classification - EM algorithm under Non-local priors
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Conclusions

1 We proposed the use of NLPs priors in Normal mixture models for
Bayesian model selection procedures. We defined a new formulation
of NLPs leading to tractable expressions of the normalization
constant hence avoiding a doubly-intractable problem that would
arise from other choices and defining default prior parameters aimed
at detecting multi-modalities.

2 We proposed new schemes to compute the integrated likelihood in
Normal mixture models under NLPs and for classification of
observations into clusters.

3 Based on our findings, NLPs for Bayesian model selection
procedures seem a sensible default choice for the very current and
still open problem of assessing the number K of components in
Normal mixture models.
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More research in Bayesian:
https://sites.google.com/site/jafuquene/home
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Thank You!!!
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