ARTÍCULO ORIGINAL

VALUE OF ENTOMOLOGICAL
COLLECTIONS IN THE STUDY OF
BIODIVERSITY: EXAMPLES FROM
THE COLLECTION OF HARD SCALES
(HEMIPTERA: DIASPIDIDAE), WHITEFLIES
(HEMIPTERA: ALEYRODIDAE) AND
SWEAT BEES (HYMENOPTERA:
HALICTIDAE) AT THE CALIFORNIA
ACADEMY OF SCIENCES

John W Dooley, Allan H Smith-Pardo*

* Corresponding author: United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 389 Oyster Point Blvd, Suite 2A South San Francisco, CA 94080 allan.h.smith-pardo@aphis.usda.gov

Abstract.

This paper demonstrates the value of entomological collections in the study of biodiversity citing examples from material that was deposited at the California Academy of Sciences in San Francisco that resulted into the description of new insect species. Specimens used from this collection include whiteflies (Hemiptera-Sternorryncha-Aleyrodidae), armored scales (Hemiptera-Sternorryncha-Coccoidea-Diaspididae) and sweat bees (Hymenoptera-Halictidae).

Key words: Apoidea, Coccoidea, Entomological collection, *Gadigaleyrodes*, Taxonomy.

Resumen.

En el presente artículo demostramos la importancia que posen las colecciones de entomología para el estudio de la diversidad, en particular, se proveen ejemplos de material que estaba depositado como misceláneo en las colecciones de la Academia de Ciencias de California en San Francisco. Las partes de la colección utilizadas para los ejemplos incluyen las moscas blancas (Aleyrodidae), escamas duras (Diaspididae) y abejas del sudor (Halictidae).

Palabras clave: Apoidea, Coccoidea, Colecciones entomológicas, Gadigaleyrodes, taxonomía.

Introduction:

Work and new species found in miscellaneous material at the California Academy of Sciences

The California Academy of Sciences collection (CAS) has one of the largest entomological collection in the United States; in fact, their holdings were estimated to more than 15 million specimens (Norman Penny, pers.comm), which represents twice the number reported in 2004 by Suarez and Tsutsui. The CAS provides important resources to the study of the diversity of insects worldwide. Museums provide important functions such as receiving, curating, preserving, and identifying specimens while maintaining associated data (such as field notes, geographical coordinates, host records, and valuable biological information) for future research (Ross 1950, Winston 2007). In addition, CAS provides other services such as research, education, and public outreach.

In general the biological collections at CAS maintain and keep biological data up to date and that document past and present-day patterns of biological distribution and diversity in our planet and are primary source for taxonomic work (such as taxonomic revisions and species description and name holding) as well as other biological disciplines.

While working in the curation of some sections of the CAS the authors discovered several undescribed species of armored scales (Hemiptera-Sternorryncha-Coccoidea- Diaspididae), whiteflies (Hemiptera-Sternorryncha-Aleyrodidae) and sweat (Hymenoptera- Halictidae) some of which have been described and published as new to science in recent years. The armored scale Protomorgania koebelei Dooley and Evans (2012) (figure1) and the whitefly Gadigaleyrodes froggatti Dooley and Gillespie (2013) (figure 2) were recently described even though they were collected more than a hundred years ago, This contribution aims to highlight the importance of natural history collections, and in particular that of the CAS, as holders of uncounted new species awaiting for description.

Origins of material and the process of discovery

The specimens referred herein are deposited at the CAS (Norman Penny, Collection Manager) and which represent examples of the entomological fauna for every zoogeographical region of the world.

At the beginning of this work, miscellaneous armored scales and whiteflies were slide mounted from specimens with their associated hosts using the techniques presented by Dooley (2011) since the material for this two families were found only dried without slide mounted specimens, including material collected by Froggatt (Froggatt 1932) and Koebele more than a century ago.

Another source of armored scales for some of the remarkable species found (and slide mounted) came from fresh material collected during 2002 as part of the Madagascar Diversity Project directed by the California Academy of Sciences (CAS) by Brian Fisher (PI). These specimens were preserved in 95% alcohol and sent to the University of Massachusetts at Amherst for non-destructive DNA extraction and sequencing. Based on a combination of information from two nuclear loci (28S, EF1a), one mitochondrial locus (COI-II), and morphological data, two new species each of genus Melissoaspis and Melanaspis have been described and are being published (S. Schneider pers. comm.).

In the case of the bees, just to cite an example one of us (AHSP) discovered a new species of bee when sorting out undetermined Halictidae bees; Habralictus insularis Smith-Pardo, 2009 (figure 3) described and some interesting remarks about its biogeography were also published by Smith-Pardo (2005) among some remarkable things, this was the first species of the genus Habralictus published in more than 30 years, and represented the second known species in the same genus inhabiting an island.

Conclusions

Natural history collections, such as the one at CAS are important not only as holder of material for morphological or taxonomical studies, but also as a source of material for molecular studies that lead to the development of molecular diagnostic tools for stages of some groups of insects, that cannot be identified morphologically to species, such as adult whiteflies or immature armored scales.

We believe that by offering the examples above we emphasize even more the enormous importance of natural history collections and their care, continually curating and studying collections including digitization of data and imaging identified taxa, revising lists of established taxa with newly described genera and species, and better documentation of geographical distribution and host preferences of all species are a most of we want to keep a collection active and "alive".

Acknowledgments

We are grateful to Dr. Norman Penny, collection manager of the entomological collection at CAS for allowing us into the collection and for all the logistics. We will also like to thank Dr. Kyle Beucke USDA- APHIS- PPQ, Ray Gill (California Department of Food and Agriculture) for reviewing this paper, and Mr. Arthur Berlowitz, officer in charge at the Plant Inspection Station in South San Francisco for his continuous support.

Literature Cited

Dooley J. 2011. Whitefly pupa of the

World. Plant Protection and Quarantine, United States Department of Agriculture, Available at http://keys.lucidcentral.org/keys/v3/whitefly/Default.htm (accessed 6 May 2012).

Dooley JW, Evans GA. 2012. A new genus and species of armored scale insect (Hemiptera: Diaspididae) from Australia found in the historic Koebele Collection of the California Academy of Sciences. Insecta Mundi 0218: 1-14.

Dooley JW, Gillespie PS. 2013. *Gadigaleyrodes froggatti*, a new genus and species of whitefly (Hemiptera: Aleyrodidae) from Australia. Zootaxa 3608 (2): 137-146.

Froggatt WW. 1932. The curators and botanists of the Botanic Gardens, Sydney. Royal Australian Historical Society xviii: 101-133.

Ross ES. 1950. The role of the entomological Museum. The Pan-Pacific Entomologist 26 (1): 1-10.

Smith-Pardo AH. 2009. A new species of *Habralictus* (Hymenoptera, Halictidae) from the Island of Grenada (Lesser Antilles) with comments on the insular species of the genus. Zookeys 27: 51-58.

Suarez AV, Tsutsui ND. 2004. The value of museum collections for research and society. BioScience 54 (1): 67-74.

Winston JE. 2007. Archives of a small planet: The significance of museum collections and museum-based research in invertebrate taxonomy. Zootaxa 1668: 47-54.

Table 1. List of whiteflies and hard scales at the CAS: first genus (two species) corresponds to Aleyrodidae, all other genera are Diaspididae. Generic names in bold letters have more than one species.

Genus	Species	Author	Host	Origin
Melissoaspis	fisheri	Ben-Dov	undetermined	Madagascar
	reticulata	Ben-Dov	undetermined	Madagascar
Melanaspis	madagascariensis	(Mamet)	undetermined	Madagascar
Morganella	formicaria	Ben-Dov	undetermined	Madagascar
Gadigaleyrodes	froggatti	Dooley & Gillespie	"Syncarpia"	Australia
Acutaspis	albopicta	(Cockerell)	Rosa sp.	Mexico
Adiscoiorinia	secreta	Green	Nephelium sp.	Hong Kong
Andaspis	sp. (A. crawii?)	NA	Quercus cuspidata	Japan
Aonidia	sp.	NA	Quercus salicifolia	Hong Kong
Aonidiella	aurantii	(Maskell)	Olea europaea	Australia
	citrina	(Coquillet)	Cydonia sp.	Western Samoa
	orientalis	Newstead	Erythrina variegata	Hong Kong
Aulacaspis	vitis	(Green)	undetermined	Hong Kong
Aulacaspis	vitis	(Green)	Eleagnus sp.	Taiwan
Chortinaspis	bilobis	(Maskell)	grass	Hong Kong
Chrysomphalus	aonidum	Linnaeus	undetermined	Taiwan
	dictyospermi	(Morgan)	Citrus sp.	Taiwan
Diaspidiotus	liquidenbaris?		Petrea sp.	Mexico
	perniciosus	(Comstock)	Pyrus achras	Hong Kong
Duplaspidiotus	claviger	(Cockerell)	Hakea sp.	Australia?
Epidiaspis	leperii	((Signoret)	undetermined	California
Epidiaspis	leperii	(Signoret)	Malus sp.	California
Fiorinia	sp.	NA	Juniperus sp.	Taiwan
	sp.	NA	undetermined	undetermined
	sp.	NA	Torreya nucifera	Japan
Hemiberlesia	lataniae	(Signoret)	Celtis occidentalis	Mexico
	lataniae	(Signoret)	Opuntia sp.	Mexico
	lataniae	(Signoret)	undetermined	Mexico
	lataniae	(Signoret)	Nicotiana sp.	Mexico
	lataniae	(Signoret)	Phoradendron sp.	Mexico
	lataniae	(Signoret)	undetermined	Mexico
	lataniae	(Signoret)	"Copal"	Mexico
	lataniae	(Signoret)	undetermined	Fiji
	rapax	(Comstock)	Cereus sp.	Mexico

	rapax	(Comstock)	Asclepias sp.	Mexico
	rapax	(Comstock)	Mimosa sp.	Mexico
	rapax	(Comstock)	undetermined	Mexico
	rapax	(Comstock)	undetermined	undetermined
	rapax	(Comstock)	Malus sp.	California
	rapax	(Comstock)	Hedera sp.	California
	rapax	(Comstock)	Arctostaphylos sp.	California
Hemiberlesia	rapax	(Comstock)	undetermined	undetermined
Lepidosaphes	beckii	(Newman)	Myrtus sp.	California
	beckii	(Newman)	Citrus sinensis	Sri Lamka
	conchiformis	(Gmelin)	Crataegus sp.	Mexico
	mexicana	(Cockerell)	Nettle tree	Mexico
	newsteadi	(Sulc)	Sciadopitys verticillata	Japan
	sp.	NA	Panicum sp.	Hong Kong
	tubulorum	Ferris	Melia sp.	China
	ulmi	(Linnaeus)	Myrtus sp.	California
Lopholeucaspis	japonica	Cockerell	Celtis occidentalis	Hong Kong
Melanaspis	obscura	(Comstock)	Acer sp.	Mexico
	smilacris	(Cockerell)	undetermined	New York
	sp.	NA	Quercus sp.	Arizona
	sp.	NA	Syringa sp.	Mexico
Mycetaspis	personata	(Comstock)	Prosopis sp.	Mexico
Oceanaspidiotus	spinosus	(Comstock)	undetermined	Mexico
Odonaspis	oshimaenis	Kuwana	Bambusa tessallata	Japan
Opuntiaspis	carinata	(Cockerell)	Citrus aurantiifolia	Mexico
	philococcus	Cockerell	Cereus sp.	Mexico
Parlatoria	theae	Cockerell	Thea sp.	Japan
Pinnaspis	sp.	NA	Eugenia sp.	Japan
	theae	(Maskell)	Tea sp.	Taiwan
Poliaspis	sp.	NA	Acacia sp.	Australia
Protodiaspis	Sp.	NA	Quercus sp.	Mexico
	sp.	NA	undetermined	Mexico
Protomorgania	koebelei	Dooley and Evans	Pittosporum sp.	Australia
Pseudaonidia	cingulata	Froggatt	Casuarina sp.	Australia
Pseudaulacaspis	cockerelli	(Cooley)	Eugenia sp.	Hawaii
	cockerelli	(Cooley)	Michaelia figo	California
	cockerelli	(Cooley)	undetermined	Sri Lanka
	cockerelli	(Cooley)	Artocarpus sp.	Hong Kong
	COCKCICIII	(-) /		
	cockerelli	(Cooley)	Palmaceae	Australia

	cockerelli	(Cooley)	Eucalyptus sp.	
	cockerelli	(Cooley)	Ptychosperma sp.	Australia
	cockerelli	(Cooley)	Palmaceae	Australia
Selenaspidus	articulata	Say	Citrus sp.	Mexico
Thysanofiorinia	nephelii	Maskell	Dimocarpus longan	China
Unaspis	sp.	NA	undetermined	Mexico

List of figures

Figure 1. Protomorgania koebelei Dooley and Evans. 2012. Illustration by Dr. Greg Evans and image by John Dooley. Original condition of specimens in the collection (left), same specimens slide mounted and illustrated (right).

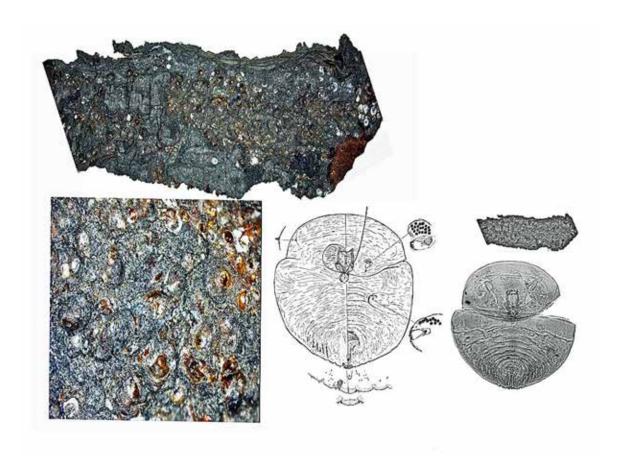
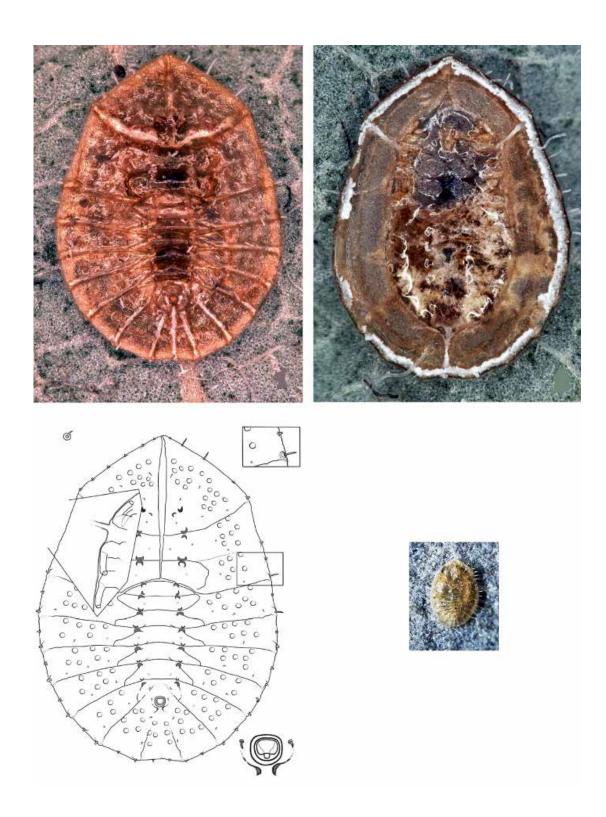
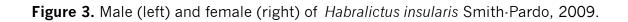
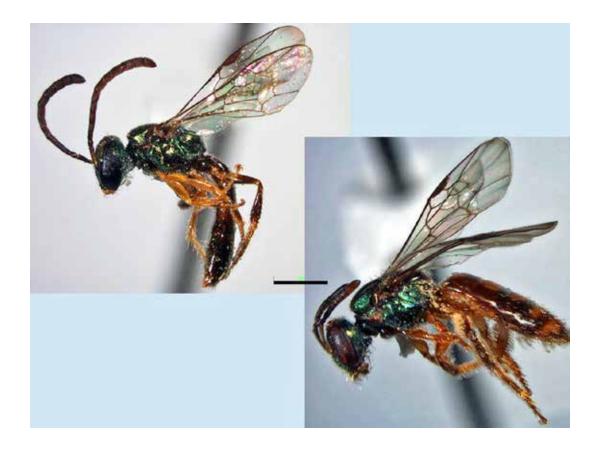





Figure 2. Gadigaleyrodes froggatti Dooley and Gillespie 2013. Image by John Dooley

