49868
I. Libros y capítulos de libros
[1] G. Albrecht. Das allgemeine Trilaterationsproblem und seine inkongruenten Lösungen, volume 401 of D. Geod. Komm. Bayer. Akad. Wiss. C. Verlag der Bayerischen Akademie der Wissenschaften, München, 1993.
[2] G. Albrecht. Rational Triangular Bézier Surfaces — Theory and Applications. Berichte aus der Mathematik. Shaker–Verlag, Aachen, 1999. Habilitationsschrift, Fakultät für Mathematik, TU München.
[3] G. Albrecht. Géométrie projective. Encyclopédie Les Techniques de l’Ingénieur, AF 206 : 1–14, 4 2008.
[4] G. Albrecht. Géométrie affine et euclidienne. Encyclopédie Les Techniques de l’Ingénieur, AF 209 :1–16, 10 2009.
[5] G. Albrecht. Géométrie différentielle. Encyclopédie Les Techniques de l’Ingénieur, AF 207: 1–16, 2011.
II. Artículos publicados en revistas y actas de conferencias internacionales con comité de redacción
[1] G. Albrecht. Eine Bemerkung zum Satz von IVORY. J. of Geometry, 50 :1–10, 1994.
[2] G. Albrecht. A note on Farin points for rational triangular Bézier patches. Computer Aided Geometric Design, 12 :507–512, 1995.
[3] G. Albrecht and R. T. Farouki. Construction of C2 Pythagorean–hodograph interpolating splines by the homotopy method. Advances in Computational Mathematics, 5 :417–442, 1996.
[4] G. Albrecht. A geometrical design handle for rational triangular Bézier patches. In T. Goodman and R. Martin, editors, The Mathematics of Surfaces VII, pages 161–171, Winchester, 1997. Information Geometers.
[5] G. Albrecht and W. L. F. Degen. Construction of Bézier rectangles and triangles on the symmetric Dupin horn cyclide by means of inversion. Computer Aided Geometric Design, 14 :349–375, 1997.
[6] G. Albrecht. Applications of a fruitful relation between a Dupin cyclide and a right circular cone. Computing [Suppl.], 13 :1–15, 1998.
[7] G. Albrecht. Determination and classification of rational triangular quadric patches. Computer Aided Geometric Design, 15 :675–697, 1998.
[8] G. Albrecht. A practical classification method for rational quadratic Bézier triangles with respect to quadrics. In M. Dæhlen, T. Lyche, and L.L. Schumaker, editors, Mathematical Methods for Curves and Surfaces II, pages 1–8, Nashville & London, 1998. Vanderbilt University Press.
[9] G. Albrecht. Rational quadratic Bézier triangles on quadrics. In F.-E. Wolter and N.M. Patrikalakis, editors, Proceedings Computer Graphics International 1998, pages 34–40, Los Alamitos, CA, 1998. IEEE Computer Society.
[10] G. Albrecht. Invariante Gütekriterien im Kurvendesign, Einige neuere Entwicklungen. In G. Brunnett, H. Hagen, H. Müller, and D. Roller, editors, Dagstuhl Seminar 1997, pages 134–148, Leipzig–Stuttgart, 1999. Teubner.
[11] G. Albrecht. Determination of geometrical invariants of rationally parametrized conic sections. In T. Lyche and L.L. Schumaker, editors, Mathematical Methods in CAGD: Oslo 2000, pages 15–24, Nashville, TN, 2001. Vanderbilt University Press.
[12] G. Albrecht. The Veronese surface revisited. J. of Geometry, 73 :22–38, 2002.
[13] G. Albrecht. An algorithm for parametric quadric patch construction. Computing, 72 :1–12, 2004.
[14] G. Albrecht, J.-P. Bécar, G. Farin, and D. Hansford. Détermination de tangentes par l’emploi de coniques d’approximation. Revue internationale d’ingénierie numérique, 1(1) :91–103, 2005.
[15] G. Albrecht, J.-P. Bécar, G. Farin, and D. Hansford. On the approximation order of tangent estimators. Computer Aided Geometric Design, 25 :80–95, 2008.
[16] G. Albrecht, J.-P. Bécar, and X. Xiang. Géométrie des points d’inflexion et des singularités de cubiques rationnelles. Revue Electronique Francophone d’Informatique Graphique (REFIG), 2(1) :33–46, 2008.
[17] I. Cattiaux-Huillard, G. Albrecht, and V. Hernández-Mederos. Paramétrisation optimale de coniques. Revue Electronique Francophone d’Informatique Graphique (REFIG), 3(1) :13–19, 2009.
[18] I. Cattiaux-Huillard, G. Albrecht, and V. Hernández-Mederos. Optimal parameterization of rational quadratic curves. Computer Aided Geometric Design, 26(7) :725–732, 2009.
[19] C. Fünfzig, K. Müller, and G. Albrecht. Visual debugger for single-point-contact haptic rendering. In A. Ebert and P. Dannenmann, editors, SE 2009 - Workshopband (HCIV), GI-Edition – Lecture Notes in Informatics (LNI). Bonner Köllen Verlag, March 2009.
[20] C. Fünfzig, P. Thomin, and G. Albrecht. Haptic manipulation of rational parametric planar cubics using shape constraints. In Sung Y. Shin, Sascha Ossowski, Michael Schumacher, Mathew J. Palakal, and Chih-Cheng Hung, editors, Proceedings of the 25th ACM Symposium On Applied Computing (SAC’10), pages 1253–1257. ACM, March 22–26 2010.
[21] M. Boschiroli, C. Fünfzig, L. Romani, and G. Albrecht. A comparison of local parametric C0 Bézier interpolants for triangular meshes. Computers & Graphics, 35(1) :20–34, 2011.
[22] G. Albrecht. Geometric invariants of parametric triangular quadric patches. Int. Electron. J.Geom., 4(2) :63–84, 2011.
[23] L. Saini, N. Lissarrague, G. Albrecht, L. Romani, C. Fünfzig, and J.P. Bécar. Animation 3d : mouvements de caméra réalistes pour la stop motion. In Proceedings of the 11ème conference internationale H2PTM (Hypertextes et Hypermédias, Produits, Outils et Méthodes), "Hypermédias et pratiques numériques", pages 137–143. Université de Metz, Hermes Science / Lavoisier, October 2011.
[24] L. Saini, N. Lissarrague, G. Albrecht, and L. Romani. Stop-motion animation : towards a realistic 3d camera movement control. In Proceedings of ISEA 2011, The 17th International Symposium on Electronic Art, http ://isea2011.sabanciuniv.edu, 2011. Sabanci University, Istanbul.
[25] M. Boschiroli, C. Fünfzig, L. Romani, and G. Albrecht. G1 rational blend interpolatory schemes : A comparative study. Graphical Models, 74(1) :29–49, January 2012.
[26] G. Albrecht and L. Romani. Convexity preserving interpolatory subdivision with conic precision. Applied Mathematics and Computation, 219 :4049–4066, 2012.
[27] L. Saini, G. Albrecht, N. Lissarrague, and L. Romani. A new system for stop motion camera movements. Animation Practice, Process & Production, 2(1 & 2) :151–187, 2012.
[28] L. Saini, G. Albrecht, N. Lissarrague, and L. Romani. Animation réaliste d’une caméra pour la stop motion : de la modélisation à la prise de vue. Revue Electronique Francophone d’Informatique Graphique, 7(1) :51–65, 2013.
[29] L. Romani, L. Saini, and G. Albrecht. Algebraic-trigonometric Pythagorean-Hodograph curves and their use for Hermite interpolation. Advances in Computational Mathematics, 40(5-6) :977–1010, 2014.
[30] G. Albrecht, M. Paluszny, and M. Lentini. An intuitive way for constructing parametric quadric triangles. Comp. Appl. Math., 35(2) :595–617, 2016.
[31] C. González, G. Albrecht, M. Paluszny, and M. Lentini. Design of C2 Algebraic Trigonometric Pythagorean Hodograph splines with shape parameters. Comp. Appl. Math., doi :10.1007/s40314-016-0404-y, 2016.
[32] G. Albrecht and Th.J. Peters D. Gonsor, S. Mann. Geometric Design : Visualization and Representation. SIAM News, December, 2016.
[33] G. Albrecht, C. V. Beccari, J. Ch. Canonne, L. Romani. Planar Pythagorean- Hodograph B-Spline curves. Computer-Aided Geom. Design, 57 (2017) 57–77.
[34] G. Albrecht, C. V. Beccari, L. Romani. Spatial Pythagorean-Hodograph B-Spline curves and 3D point data interpolation. Computer-Aided Geom. Design, 80 (2020) 101868.
[35] C. González, G. Albrecht, M. Paluszny. Visualization of dental information within CT volumes. Mathematics and Computers in Simulation 173 (2020) 71–84.
[36] G. Albrecht, C. V. Beccari, L. Romani. G2/C1 Hermite interpolation by planar PH B-spline curves with shape parameter. Applied Mathematics Letters 121 (2021) 107452.
A